
Chipfilm™-II Technology Process
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• Pre-process module (I)
 n-implant
 anodic etching
 thermal annealing
 epitaxial growth

• Device Integration

• Post-process module
 Trench etching
 Chip detachment
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Chipfilm™-II Technology Process
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• Pre-process module (I)
 n-implant
 anodic etching
 thermal annealing
 epitaxial growth

• Device Integration

• Post-process module
 Trench etching
 Chip detachment
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Chipfilm™-II Technology Process
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• Pre-process module (I)
 n-implant
 anodic etching
 thermal annealing
 epitaxial growth

• Device Integration

• Post-process module
 Trench etching
 Chip detachment

CMOS layers



Chipfilm™-II Technology Process
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• Pre-process module (I)
 n-implant
 anodic etching
 thermal annealing
 epitaxial growth

• Device Integration

• Post-process module
 Trench etching
 Chip detachment

RIE trenches



Chipfilm™-II Technology Process
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• Pre-process module (I)
 n-implant
 anodic etching
 thermal annealing
 epitaxial growth

• Device Integration

• Post-process module
 Trench etching
 Chip detachment

fracture of
specific anchors

(weak attachment)



Chipfilm™-II Technology Process
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• Pre-process module (I)
 n-implant
 anodic etching
 thermal annealing
 epitaxial growth

• Device Integration

• Post-process module
 Trench etching
 Chip detachment

fracture of
residual anchors

(detachment)

pick-force



Chipfilm™-II Technology Process
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• Pre-process module (I)
 n-implant
 anodic etching
 thermal annealing
 epitaxial growth

• Device Integration

• Post-process module
 Trench etching
 Chip detachment

pick & place



Chipfilm™-II Technology Process
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• Pre-process module (I)
 n-implant
 anodic etching
 thermal annealing
 epitaxial growth

• Device Integration

• Post-process module
 Trench etching
 Chip detachment

18 μm

epi Si

substrate wafer

sPS
anchor

~ 2 μm

6μm



Fabricated Ultra-Thin Chips
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• Blanket Si wafers
 675 µm 

• Blanket Chipfilm™ dies
 18 μm
 8 μm

8 μm18 μm

Ultra-thin vs. Standard Chips

400μm20μm

• 0.8 µm CMOS bulk wafers
 675 µm initial thickness
 400 µm after back-grinding

• Chipfilm™ IC chips
 20 μm



Process Window (I)
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Stable anchors during wafer processing
Controlled anchor fracture for chip detachment

- Process Induced Stress (PIS)
- Externally Induced Stress (EIS)
- Force from pick & place tool

• Sources of PIS
 Rapid thermal processing
 Wafer bow
 Mismatch of CMOS layers
 thin chip warpage
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Process Window (II)
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• Before etching the separation trenches
 Anchors are enclosed by substrate and device layers

 Anchors are shielded from stress

PIS



Process Window (II)
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• Before etching the separation trenches
 Anchors are enclosed by substrate and device layers

 Anchors are shielded from stress
• After etching of separation trenches

 Free lateral space for chip deformation due to PIS
 High stress on anchors
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Process Window (III)
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• Uniform anchor array
 After EIS remaining:

 Outer ring of anchors

 Used for generic wafers

• Non-uniform anchor array
 After EIS remaining:

 Outer ring of anchors
 Inner group of anchors

 Pre-defined chip locations



Process Window (IV)
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Diameter
(μm)

Pitch
(μm)

Trenching
chip loss

Pick-yield
(before EIS)

Pick-yield
(after EIS)

target: 0% target: 100% target: 100%
1.0 25 0% 0% 16%
1.0 50 0% 2% > 99%
1.0 100 ~ 10% - -
1.0 100/50/25 0% 3% > 99%

• Pick-yield depends on:
– Design and pitch of anchor array
– Anchor dimensions (diameter)
– PIS (technology, chip thickness, layout)



Process Window (IV)
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Diameter
(μm)

Pitch
(μm)

Trenching
chip loss

Pick-yield
(before EIS)

Pick-yield
(after EIS)

target: 0% target: 100% target: 100%
1.0 25 0% 0% 16%
1.0 50 0% 2% > 99%
1.0 100 ~ 10% - -
1.0 100/50/25 0% 3% > 99%

• Pick-yield depends on:
– Design and pitch of anchor array
– Anchor dimensions (diameter)
– PIS (technology, chip thickness, layout)



Process Window (IV)
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Diameter
(μm)

Pitch
(μm)

Trenching
chip loss

Pick-yield
(before EIS)

Pick-yield
(after EIS)

target: 0% target: 100% target: 100%
1.0 25 0% 0% 16%
1.0 50 0% 2% > 99%
1.0 100 ~ 10% - -
1.0 100/50/25 0% 3% > 99%

• Pick-yield depends on:
– Design and pitch of anchor array
– Anchor dimensions (diameter)
– PIS (technology, chip thickness, layout)

 EIS is essential for maximum pick-yield



Benchmarking
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Surface Planarity

Process Flow

Special Equipment

Wafer Thinning Chipfilm

 Technologies have different advantages

 Chipfilm™ will likely be aiming at applications different from wafer thinning
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• Ultra-thin chip fabrication
 Post-process wafer thinning
 Thin chips based on SOI
 Chipfilm™ technology

• Characteristics of ultra-thin chips
 Warpage of thin chips
 Mechanical stability of thin chips
 Apparently anomalous piezoresistive effect

• Constraints for circuit design

• Conclusions

Ultra-Thin Chips: A New Paradigm 2/11 © IMS 201153



Thin Chip Warpage (I)
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Test Chip Product Chip

• Chip warpage becomes substantial if die is extremely thin
 Packaging becomes increasingly difficult
 Piezoresistive offset due to warpage

• Degree of warpage depends on chip layout
 Opportunity to tailor warpage

 by suitable layout ground rules
 through layer and structural stress management

ESTC 2010



Thin Chip Warpage (II)
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Thin Chip Warpage (III)
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Product Chip Test Chip

ChipfilmTM
Spherical Twist & Spherical
d ~ 65 µm d ~ 145 µm

Back-Grinded
Spherical & Cylindrical Twist & Spherical

d ~ 85 µm d ~ 200 µm

Cylindrical Spherical Twist
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Mechanical Chip Stability
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Chipfilm™

50μm back-grinded (BG)*
50μm back-grinded with
plasma etch-relief (BG+)*
20μm Chipfilm™ IC layer
18μm Chipfilm™ bare Si

* *

 Chipfilm™ technology offers superior chip stability

* P. M. Heinze,
Int. Forum be-flexible,
Munich, 2008 (data trend lines).

IEDM 2010



Mechanical Chip Stability
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<110>

 Anchor array design has little effect on chip stability

pitch = 50μm (rot = 0°)
pitch = 100-50-25μm (rot = 0°)
pitch = 50μm (rot = 3°)

-5

-4

-3

-2

-1

0

1

2

4.0 5.0 6.0 7.0 8.0 9.0
Nat. logarithm of fracture stress [ln MPa]

Fr
ac

tu
re

 P
ro

pa
bi

lit
y 

(%
)

CDS(63.2%)

MDS(1%)

99.9

93.4

63.2

30.8

12.7

4.9

1.8

0.7

CDS = 2.6 – 3.0GPa

IEDM 2010



Outline
• Ultra-thin chips: the paradigm shift

• Applications of ultra-thin chips
 Traditional, recent and potential future applications
 3D ICs: Overcoming a bottleneck in CMOS scaling
 Systems-in-Foil (SiF): enabler for new applications

• Ultra-thin chip fabrication
 Post-process wafer thinning
 Thin chips based on SOI
 Chipfilm™ technology

• Characteristics of ultra-thin chips
 Warpage of thin chips
 Mechanical stability of thin chips
 Apparently anomalous piezoresistive effect

• Constraints for circuit design

• Conclusions

Ultra-Thin Chips: A New Paradigm 2/11 © IMS 201160



Piezoresistive Effect (I)
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R

DUTIssues with thin chip testing:
• 4-point beam bending not applicable

• Extremely small dimensions
• Non-linear effects

Approach:
• Chip-tape glue assembly

• DUT bent to radius (R)

• Consistent with application
• Sample-sample variation
• Apparent stress at chip

surface unknown

100 mm                               7.5 mm

 Apparent piezoresistive effect likely affected by assembly IEDM 2009



Piezoresistive Effect (II)
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Bulk-Si
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Piezoresistive Effect (III)
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σx

σ0

σy= σy(x,y,R,σ0)

σy

σx= σx(x,y,R,σ0)

σ0

• Different piezoresistive characteristics for Chipfilm™ vs. Bulk-Si

 Apparent superposition of biaxial stress components
 Viscoelastic glue transforms uniaxial into biaxial stress

• Piezoresistive effect depends on location on chip

 Non-linear dependence ∆ID/ID vs. σ, i.e. Π not constant !?
 Stress offsets ∆σx and ∆σy from flat assembly of warped chip

 Offset ∆σx changes in test set up while ∆σy does not !

TLL  *

LTT  *
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Piezoresistive Effect (IV)
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Constraints on Circuit Design (I)
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Constraints on Circuit Design (II)
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1. Process-corner based design:

+ Piezoresistive effect:

 Parametric yield loss

2. Improvements:

Eff. process tolerance σ
has impact on yield loss !

 Parameter shift

Widened process corners
 Optimum FET layout
 Compensation by design

NMOS/PMOS ≡ transversal/longitudinal

NMOS/PMOS ≡ longitudinal/transversal150
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0 0,02 0,04 0,06

Inverse Radius (1/mm)

0° Orientation:          
90° Orientation:          

40 30 25 20∞
Radius (mm)

0.060.040.02

Chip detached
from tape at 
20 mm radius

Operating Current
of Circuit P47

Constraints on Circuit Design (III)
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Mixed-Signal Circuit P47:

 38,000 digital FETs (0º)
 2,700 analog FETs (90º)
 Standby current set by current source

ISSCC 2008
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Conclusions 

• Ultra-thin chips will help to overcome various bottlenecks 
and be the basis for new applications in silicon 
technologies.

• But: Ultra-thin chips and wafers call for new techniques in 
wafer and chip processing and handling.

• But: Ultra-thin chips have properties that are partly 
different from those of thick silicon chips.

• But: The differences in chip properties may call for their 
appropriate consideration in circuit design.

• Therefore: Ultra-thin chip technology represents a 
paradigm shift in silicon technology. 
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