

- Pre-process module (I)
 - n-implant
 - anodic etching
 - thermal annealing
 - epitaxial growth
- Device Integration
- Post-process module
 - Trench etching
 - Chip detachment

Pre-process module (I)

- n-implant
- anodic etching
- thermal annealing
- epitaxial growth
- Device Integration

Post-process module

- Trench etching
- Chip detachment

• Pre-process module (I)

- n-implant
- anodic etching
- thermal annealing
- epitaxial growth
- Device Integration
- Post-process module
 - Trench etching
 - Chip detachment

Pre-process module (I)

- n-implant
- anodic etching
- thermal annealing
- epitaxial growth
- Device Integration
- Post-process module
 - Trench etching
 - Chip detachment

Pre-process module (I)

- n-implant
- anodic etching
- thermal annealing
- epitaxial growth
- Device Integration
- Post-process module
 - Trench etching
 - Chip detachment

- Pre-process module (I)
 - n-implant
 - anodic etching
 - thermal annealing
 - epitaxial growth
- Device Integration
- Post-process module
 - Trench etching
 - Chip detachment

- Pre-process module (I)
 - n-implant
 - anodic etching
 - thermal annealing
 - epitaxial growth
- Device Integration
- Post-process module
 - Trench etching
 - Chip detachment

Fabricated Ultra-Thin Chips

- **Blanket Si wafers**
 - 675 µm
- Blanket Chipfilm[™] dies
 - 18 µm
 - 8 µm

0.8 µm CMOS bulk wafers

- 675 µm initial thickness
- 400 µm after back-grinding
- Chipfilm[™] IC chips
 - 20 µm

Stable anchors during wafer processing

Controlled anchor fracture for chip detachment

- Process Induced Stress (PIS)
- Externally Induced Stress (EIS)
- Force from pick & place tool

Sources of PIS

- Rapid thermal processing
- Wafer bow
- Mismatch of CMOS layers
 - \rightarrow thin chip warpage

- <u>Before</u> etching the separation trenches
 - Anchors are enclosed by substrate and device layers
 - → Anchors are shielded from stress

- Before etching the separation trenches
 - Anchors are enclosed by substrate and device layers
 → Anchors are shielded from stress

• <u>After</u> etching of separation trenches

- Free lateral space for chip deformation due to PIS

→ High stress on anchors

Process Window (III)

- Uniform anchor array
 - After EIS remaining:
 - Outer ring of anchors
 - Used for generic wafers

- Non-uniform anchor array
 - After EIS remaining:
 - Outer ring of anchors
 - Inner group of anchors
 - Pre-defined chip locations

Diameter (µm)	Pitch (µm)	Trenching chip loss	Pick-yield (before EIS)	Pick-yield (after EIS)
		target: 0%	target: 100%	target: 100%
1.0	25	0%	0%	16%
1.0	50	0%	2%	> 99%
1.0	100 🔻	~ 10%	-	-
1.0	100/50/25	0%	3%	> 99%

• Pick-yield depends on:

- Design and pitch of anchor array
- Anchor dimensions (diameter)
- PIS (technology, chip thickness, layout)

Diameter (µm)	Pitch (µm)	Trenching chip loss	Pick-yield (before EIS)	Pick-yield (after EIS)
		target: 0%	target: 100%	target: 100%
1.0	25	0%	0%	16%
1.0	50	0%	2%	> 99%
1.0	100	~ 10%	-	-
1.0	100/50/25	0%	3%	> 99%

• Pick-yield depends on:

- Design and pitch of anchor array
- Anchor dimensions (diameter)
- PIS (technology, chip thickness, layout)

Diameter (µm)	Pitch (µm)	Trenching chip loss	Pick-yield (before EIS)	Pick-yield (after EIS)
		target: 0%	target: 100%	target: 100%
1.0	25	0%	0%	16%
1.0	50	0%	2%	> 99%
1.0	100 🔻	~ 10%	-	-
1.0	100/50/25	0%	3%	> 99%

• Pick-yield depends on:

- Design and pitch of anchor array
- Anchor dimensions (diameter)
- PIS (technology, chip thickness, layout)

✓ EIS is essential for maximum pick-yield

→ Technologies have different advantages

→ Chipfilm[™] will likely be aiming at applications different from wafer thinning

Outline

- Ultra-thin chips: the paradigm shift
- Applications of ultra-thin chips
 - Traditional, recent and potential future applications
 - 3D ICs: Overcoming a bottleneck in CMOS scaling
 - Systems-in-Foil (SiF): enabler for new applications
- Ultra-thin chip fabrication
 - Post-process wafer thinning
 - Thin chips based on SOI
 - Chipfilm[™] technology
- Characteristics of ultra-thin chips
 - Warpage of thin chips
 - Mechanical stability of thin chips
 - Apparently anomalous piezoresistive effect
- Constraints for circuit design
- Conclusions

- Chip warpage becomes substantial if die is extremely thin
 - Packaging becomes increasingly difficult
 - Piezoresistive offset due to warpage

• Degree of warpage depends on chip layout

- Opportunity to tailor warpage
 - by suitable layout ground rules

ESTC 2010

through layer and structural stress management

Test Chip

Thin Chip Warpage (II)

Thin Chip Warpage (III)

	Product Chip	Test Chip
Chipfilm™	Spherical	Twist & Spherical
	d ~ 65 µm	d ~ 145 µm
Peak Crinded	Spherical & Cylindrical	Twist & Spherical
Dack-Grindeu	d ~ 85 µm	d ~ 200 µm

Outline

- Ultra-thin chips: the paradigm shift
- Applications of ultra-thin chips
 - Traditional, recent and potential future applications
 - 3D ICs: Overcoming a bottleneck in CMOS scaling
 - Systems-in-Foil (SiF): enabler for new applications
- Ultra-thin chip fabrication
 - Post-process wafer thinning
 - Thin chips based on SOI
 - Chipfilm[™] technology

• Characteristics of ultra-thin chips

- Warpage of thin chips
- Mechanical stability of thin chips
- Apparently anomalous piezoresistive effect
- Constraints for circuit design
- Conclusions

Mechanical Chip Stability

✓ Chipfilm[™] technology offers superior chip stability

IEDM 2010

iss inschips

Mechanical Chip Stability

✓ Anchor array design has little effect on chip stability

IEDM 2010

Outline

- Ultra-thin chips: the paradigm shift
- Applications of ultra-thin chips
 - Traditional, recent and potential future applications
 - 3D ICs: Overcoming a bottleneck in CMOS scaling
 - Systems-in-Foil (SiF): enabler for new applications
- Ultra-thin chip fabrication
 - Post-process wafer thinning
 - Thin chips based on SOI
 - Chipfilm[™] technology

• Characteristics of ultra-thin chips

- Warpage of thin chips
- Mechanical stability of thin chips
- Apparently anomalous piezoresistive effect
- Constraints for circuit design
- Conclusions

Piezoresistive Effect (I)

Issues with thin chip testing:

- 4-point beam bending not applicable
 - Extremely small dimensions
 - Non-linear effects

Approach:

- Chip-tape glue assembly
- DUT bent to radius (R)
- Consistent with application
- Sample-sample variation
- Apparent stress at chip surface unknown

✓ Apparent piezoresistive effect likely affected by assembly

IEDM 2009

Piezoresistive Effect (II)

- Different piezoresistive characteristics for Chipfilm[™] vs. Bulk-Si
 - Apparent superposition of biaxial stress components
 - Viscoelastic glue transforms uniaxial into biaxial stress

- Piezoresistive effect depends on location on chip
 - Non-linear dependence $\Delta I_D/I_D$ vs. σ , i.e. Π not constant !?
 - Stress offsets $\Delta \sigma_x$ and $\Delta \sigma_v$ from flat assembly of warped chip
 - Offset $\Delta \sigma_x$ changes in test set up while $\Delta \sigma_y$ does not !

Piezoresistive Effect (IV)

Outline

- Ultra-thin chips: the paradigm shift
- Applications of ultra-thin chips
 - Traditional, recent and potential future applications
 - 3D ICs: Overcoming a bottleneck in CMOS scaling
 - Systems-in-Foil (SiF): enabler for new applications
- Ultra-thin chip fabrication
 - Post-process wafer thinning
 - Thin chips based on SOI
 - Chipfilm[™] technology
- Characteristics of ultra-thin chips
 - Warpage of thin chips
 - Mechanical stability of thin chips
 - Apparently anomalous piezoresistive effect
- Constraints for circuit design
- Conclusions

Constraints on Circuit Design (I)

<u>Here:</u> $\prod_{L} (100)[011]; \prod_{T} (100)[011]$

Constraints on Circuit Design (III)

Mixed-Signal Circuit P47:

- ✓ 38,000 digital FETs (0°)
- ✓ 2,700 analog FETs (90°)

Radius (mm)

✓ Standby current set by current source

ISSCC 2008

Outline

- Ultra-thin chips: the paradigm shift
- Applications of ultra-thin chips
 - Traditional, recent and potential future applications
 - 3D ICs: Overcoming a bottleneck in CMOS scaling
 - Systems-in-Foil (SiF): enabler for new applications
- Ultra-thin chip fabrication
 - Post-process wafer thinning
 - Thin chips based on SOI
 - Chipfilm[™] technology
- Characteristics of ultra-thin chips
 - Warpage of thin chips
 - Mechanical stability of thin chips
 - Apparently anomalous piezoresistive effect
- Constraints for circuit design
- Conclusions

- Ultra-thin chips will help to overcome various bottlenecks and be the basis for new applications in silicon technologies.
- **<u>But</u>**: Ultra-thin chips and wafers call for new techniques in wafer and chip processing and handling.
- **<u>But:</u>** Ultra-thin chips have properties that are partly different from those of thick silicon chips.
- **<u>But</u>**: The differences in chip properties may call for their appropriate consideration in circuit design.
- <u>Therefore</u>: Ultra-thin chip technology represents a paradigm shift in silicon technology.

Our Publications on Ultra-Thin Chips

Invited Reviews and Tutorials

- ESSDERC-ESSCIRC 2009 (Athens, Greece)
- BCTM 2009 (Capri, Italy)

Conferences

i inschips

- IEDM 2006 (San Francisco, USA)
- ISSCC 2008 (San Francisco, USA)
- IEDM 2009 (Baltimore, USA)
- ICICDT 2009 (Austin, USA)
- ESTC 2010 (Berlin, Germany)
- IEDM 2010 (San Francisco, USA)
- Transducers 2011 (Beijing, China)
- etc.

• Journals

- IEEE Trans. El. Dev., 2009
- Sol. St. Electronics, 2011

1st Edition., 2011, XXII, 467 p. 252 illus., 157 in color., Hardcover ISBN: 978-1-4419-7275-0