

School of Electrical and Electronic Engineering K.Ozanyan@Manchester.ac.UK

- Introductions: IEEE Sensors Council, The University of Manchester
- 5 minutes' excursion in Hard-Field Tomography
- Applications of Tomography sensing and imaging in Industry
- Challenges and solutions in non-medical applications:
 >wavelength-sensitive modalities: IR, THz
 >path integrals: kinds of image contrast, To-mapping
 > insufficient data: sinogram recovery from limited data

DL sponsored by the IEEE Sensors Council

MANCHESTER 1824

The University of Manchester

Celebrating 125 Years of Engineering the Future

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Conferences: IEEE Sensors xx

2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Orlando	Toronto	Vienna	Irvine	Daegu	Atlanta	Lecce	Christchurch	Hawaii	Limerick
Florida	Canada	Austria	Calif.	Korea	Georgia	Italy	N Zealand	USA	Ireland

The (new) University of Manchester

faculty of eng. & phys. sci. school of electric. & electron. eng.

president's tower

sensors, imaging and signal processing photonics 曲白 HH Hundertwasser, Wien MANCHESTER 1824

The University of Manchester

interdisciplinarityresearch-driven2015 strategy

Parallel structures: Institutes

The University of Manchester

The Photon Science Institute

- Introductions: IEEE Sensors Council, The University of Manchester
- 5 minutes' excursion in Hard-Field Tomography
- Applications of Tomography sensing and imaging in Industry
- Challenges and solutions in non-medical applications:
 >wavelength-sensitive modalities: IR, THz
 >path integrals: kinds of image contrast, To-mapping
 > insufficient data: sinogram recovery from limited data

Tomography: To see where you can't reach

1824 The University of Manchester

MANCHESTER

From Greek:

τομή - cut γραφός - image

The name reflects the fact that with carefully chosen measurements at the periphery of an object, one can produce without intrusion an image of inaccessible cross-sections.

How to extract images from measurements taken with a particular strategy?

Soft-field vs Hard-field Tomography

The University of Mancheste

"Hard" field:

The EM field propagates along a straight line through the volume, i.e. the measurement at the volume surface depends on the values of the measured quantity only along the probed path.

Examples:

.

X-ray Tomography, Positron Emission Tomography, Microwave Tomography Optical Tomography

typically **High-Frequency** modalities.

Soft-field vs Hard-field Tomography

The University of Manchester

"Soft" field:

The EM field propagates across the whole probed volume, i.e. the measurement at the volume surface depends on the values of the measured quantity everywhere in the volume.

Examples:

.

Electrical Capacitance Tomography, Electrical Impedance Tomography,

typically Low-Frequency modalities.

3D stacks of 2D slices

The University of Manchester

The object is 'sliced' along one of the axes (z) (If the slices are infinitesimally thin, we have a slice for each z)

QuickTime[™] and a YUV420 codec decompressor are needed to see this picture.

If we reconstruct each slice of the object we can reconstruct the whole object by stacking of slices

X-ray CT: the modality

The Radon Transform

MANCHESTER The University of Manchester **Experimental requirements:** 3 •as many parallel beams as possible •as many projections as possible Θ.t Rado x,y Θ_3 The **forward RT** is performed experimentally **(measurement)** The inverse RT is performed mathematically (reconstruction)

Sinogram

Inverse problem of Tomography

The University of Manchester

The basic problem of CT is:

Given a set of 1D projections and the angles at which these projections were taken, to reconstruct the 2-D image.

There are analytical and non-analytical (iterative) methods of solving the inverse problem, which is ill-posed and illconditioned.

Inverse Radon Transform (iRT)

The 1D FT of the projection function $g(\phi,s)$: $\mathbf{F}_{1D}[g(\phi,s)]$, is equivalent to

MANCH

The University of

Manchester

Direct Fourier reconstruction

MANCH

The University of Mancheste

X-ray CT in Fluidized Beds

The University of Manchester

Positron Emission Tomography Positron Emission Particle Tracking (PEPT)

MANCHESTER 1824

The University of Manchester

Particle tracking, occupancy and velocity field

Gamma-ray Tomography Stationary subjects

MANCHESTER 1824 The University of Manchester

Johansen et al., Bergen

Polypropylene/air

X-ray Tomography Kinetics in bubble colmn

Gamma-ray Tomography Fast rotating subjects - gas holdup in stirred reactor

MANCHESTER 1824

Hampel et al, FZD Dresden 8.0 gas fraction 6.0 gas fraction 1000 rpm 950 rpm 0.2 0 measurement slice 10 15 20 35 5 25 30 40 0 r in mm

Gamma-ray Tomography Fast rotating subjects - pump impeller

MANCHESTER

0 10 20 30 40 50 60 70 80 90 % Air

Gamma-ray Tomography Fast rotating subjects - fluid coupling assembly

MANCHESTER

Challenge 1: 'Spectroscopic' Tomography Interaction of EM field with matter

MANCHESTER

The University of Manchester Tera-**Optical** Microhertz **UV and HEP** wave Radio-Fat Hydrocarbons, **Functional** Aromatics. wave versus protein. groups, Ketones. H₂O, NO_2 , H₂O, Dopants, Polars. Heavy $\varepsilon(v), \sigma(v)$ SO₂ Many species Dves metals +? contrast H₂O ν 1 GHz 1 THz 1 MHz λ **10 μm** 500 nm 1 μm Ε 10 -1000keV

Modalities: Absorption, Scattering, Emission, etc

Mid IR optical fingerprints

MANCHESTER

Hydrocarbon near-IR absorption (C-H bond) MANCHESTER The University of Manchester Choose signal wavelength to measure attenuation+background . Choose reference wavelength to measure background 100% McCann et al. Manchester 95% 1 BAR 90% 3 BAR 5 BAR **10 BAR** 85% signal background gaseous iso-octane λ **1.6** μm **1.7** μm **1.8** μm

Single channel design for 1700nm

$$I_{\lambda}(L,T) = Ires_{\lambda}(0)e^{-\alpha_{\lambda}cL}.S(L) + Ith_{\lambda}(T)$$

Resonant absorption

Non-resonant attenuation (scatter)

Thermal background

Engine cylinder simulator

MANCHESTER

Cost of pushing Tomography to longer λ

MANCHESTER

The University of Mancheste

•NIR emitter source: several 1K£

•MIR emitter source: several 10K£

•THz emitter source: several 100K£,

...with no guarantee that a single source will be sufficient for multichannel tomography Carefully measure this against benefit (and current funding climate)...

Relevant properties of THz radiation

MANCHESTER 1824

The University of Manchester

- High water absorption allows realtime monitoring of water content
- THz is suitable for long molecules: sensitive to both intermolecular and intramolecular vibrations in different chemical species:
 - Proteomics and drug discovery research proteing 3D structure, folding and characterization.
 - Very sensitive to DNA hybridization and other interactions - single and double stranded DNA

THz Computerized Tomography

Currently THz CT is simulated only by rotation and translation of the object.

Known problems:

- difficulties with cost and ease to deploy
- complicated detection schemes
- "killer" applications?

The University of Manchester

THz Tomography with ultrafast lasers

Narrowband Tomography – system layout

A compact desktop system, delivering high THz power by DFG with a single seed
Pyroelectric detector arrays will be used instead of coherent detection (~20 μW per array pixel)
Easy for access and affordable THz

THz tomography in flames

MANCHESTER 1824

The University of Manchester

Challenge 2: Path Integrals Similar maths, different physics

The University of Manchester Guided Path Tomography (GPT) was pioneered in Manchester IEEE Sensors J., 5 (2) 167 2005 **Computer Tomography** Guided-Path Tomography e.g. straight propagating e.g. guided propagation of electromagnetic the electromagnetic $\Phi \approx \Phi_0 \int \mu(x) dx$ radiation $R = \frac{1}{4} \int \rho(T(x)) dx$ field Flat 2D Curved surfaces surfaces Radiation beam CT: Line integrals Wire-mesh GPT: Line integrals are along wires forming a flexible are along individual straight beams "mat"

MANCHESTER

Temperature imaging with Wire-Mesh GPT

MANCHESTER 1824

The University of Manchester

Optical fibre sensing

The University of Manchester Bending loss sensing Groove cut through cladding and into the core leads to losses as a function of bending zero deformation stretch and bend "Cold" groove

MANCHESTER

The 'deformation mat'

Photonic GPT algorithms and images

The University of Manchester

Nurgiyatna, Constantino, Davidson & Ozanyan (Manchester)

Large area monitoring by Tomography

MANCHESTER 1824

anchester The University of Manchester

Based on Guided Path Tomography, pioneered in Manchester IEEE Sensors J., 5 (2) 167 2005

- uses analogy between the mathematics of x-ray Tomography scanners and current flowing through a wire mesh with the proper geometry.
- demonstrated for temperature with a wire-mesh sensor
- demonstrated for light propagating through fibres arranged in a near-flat plane

Photonic GPT for large areas

The University of Manchester

Measure integrals of attenuation instead of individual sensors Reconstruct an image of the measurand

Plastic optical fibre - £0.80/m

LEDs - around £1

Small number of photodiodes

Well-behaved line integrals?

THz hard-field tomography

CT "line integrals" across the subject have different nature:

VS

Amplitude contrast

- Measured transmitted component gives line integrals of attenuation (species' c,T)
- Images the spatial distribution of material density
- The diffuse component eliminated by collimation, 2λ strategies, etc.
- Possible with TDS or CW

Delay contrast

- Measured time delay gives line integrals of inverse group velocity (non species-specific n(p,T))
- Images the spatial distribution
 of optical density
- The diffuse component eliminated by taking ballistic photons only
- Possible with TDS or CW (coherent detection)

MANCHESTER

The University of Mancheste

Complex phantom Refractive index imaging from only 12 angles

Extracting delay from waveforms

"Mirror" projections

The University of Manchester Delay [ps] _0 dea 3.4 – 180 dea - 90 dea - 270 dea 2.8 2.6 -15 -10 -5 0 5 10 15 Displacement [mm]

•The measured photons are "ballistic enough" – there is very little difference in which of the two objects is seen first

•Ballistic photons give us spatial resolution of the order of the wavelength

MANCHESTER

Refractive index reconstruction

MANCHESTER 1824

Phantom with (scaled) exact dimensions on top of the reconstruction:

•Standard 40x40 grid, 12 projections (still limited view!)

•Standard inverse problems regularisation, such as non-zero constraints and periphery suppression •Sharp edge is unrealistic – coincided with a line integral.

•"Glowing" sharp corners and flat result from scattering and grazing incidence reflection

Why is temperature difficult for tomography?

Temperature path integrals do not exist!!!

$$N_{d} = N_{s} \int_{\text{path}} \mu(L).dL$$

$$R = \frac{1}{A} \int_{0}^{L} \rho(T(x))dx$$

- In the case of guided-path tomography we found a quantity giving a path integral: <u>resistivity</u> (serially connected resistors). Can we find others?
- Imaging has to be done in a convoluted way:
 - Bad news: additional efforts to substantiate the theory
 - Good news: opens doors to a number of control parameters

MANCHESTER

The University of Mancheste

Ro-vibrational levels of molecules

The relative population of two ro-vibrational levels and the temperature are related according to a certain law.

If we know the relative population, we can image the temperature. Mid-IR species-specific resonances are difficult – "harmonics"?

TTOMA system <u>Temperature TO</u>mography by <u>Molecular Absorption</u>

CO:

- fundamental at 4.6 μm sources, fibres, detectors problematic
- first overtone at 2.3 μm sources, fibres, detectors complicated
- second overtone at 1.58 μ m sources, fibres, detectors -

easy and cheap (comms λ !!!)

MANCHESTER

The University of Manchester

51

Access to objects - hostile environments

Temperature Tomography in turbines

Challenge 3: Insufficient data

MANCHESTER 1824

4

15

Phantom object reconstructed from 1, 4, 8, 15, and 60 filtered back projections.

54

8

Sinograms of complex objects

Sparse and Limited Angle Tomography

MANCHESTER

IMAGER, Manchester 2002-2005 [McCann et al.]

Suggested approach

MANCHESTER 1824

The University of Manchester

Sinusoidal Hough Transform

- Treat the sinogram as a pixellated image and identify sinusoidal patterns
- Use the analytical description of the patterns to calculate and fill in missing data
- Use that description for direct identification of higher intensity clusters

 $t = r\cos(\theta - \phi)$

Only two variables, amplitude r and phase θ parameterise the curves which build the sinogram.

MANCHESTER

The University of Mancheste

Sinogram recovery - complex objects

x

x

х

The University of Manchester

MANCHESTER

Challenge 4: Data acquisition and processing

Tomography requires multichannel signal processing, tailored to each individual case :

 Phase-sensitive detection (lock-in) T-GPT, Optical, Electrical
 Balanced Ratiometric Detection P-GPT, THz, Optical
 Photon counting Optical CT, Diffuse Optical

Can analog electronics provide a solution?

The University of Manchester

60

Challenge 4: Data acquisition and processing

Signal processing algorithms

FPGA implementation

switch between algorithms in real time

Digital balanced detector

 L_{R}

The University of Manchester

MANCHESTER

Signal processing performance

MANCHESTER 1824

The University of Manchester

Digital lock-in amplifier

System throughput for 32 channels: ~200 Mbps

Digital balanced detector

The University of Manchester

- Applications of Tomography sensing and imaging in Industry
- Challenges and solutions in non-medical applications:
 >wavelength-sensitive modalities: IR, THz
 >path integrals: kinds of image contrast, To-mapping
 >insufficient data: sinogram recovery from limited data
- Acknowledgments