Methodology for Energy-Efficient Design of Digital Circuits Vojin G. Oklobdzija,

Advanced Computer Systems Engineering Laboratory University of California / University of Texas TxACE: Center of Excellence for Analog Circuits <u>http://www.acsel-lab.com</u>

> IEEE SSCS, Distinguished Lecture Santa Clara Valley Chapter April 15, 2010

- 60

*with acknolwedgment to contributions of my former students: Dr. Hoan Dao, AMD, Austin, TX and Dr. Bart Zeydel, Plato Networks

Summary of the Presentation

Energy Efficiency of Digital CMOS Circuits

o Problems

- o Energy-Delay Relationship
- o Minimizing Energy for a given delay
- o Methodology
- o Determining the best structures for highperformance system
- o Implications on the architecture

Challenges in High-Performance Design

- Optimizing for power not speed! (or maximizing speed under the power budget)
- Logical Effort (LE) optimizes for speed, regardless of power i.e. brings us in the worse energy spot.
- Our method optimizes for: *power @ given speed* or *speed @ given power*
- We are developing new approaches for power efficiency (overlooked by delay optimization) applicable to:
 - Circuit structures
 - Design techniques
 - Energy-Delay Space
 - Creation of optimal Standard cell (ASIC) libraries

Motivation for Energy Efficient Design

Shekhar Borkar

Power density will increase

- Power density passed the level found in the Nuclear Reactor !
- Power density degrades the reliability and speed.
- 4 April 19, 2010

Power Density: The Future

With high power density, cannot assume uniformity

- As die temperature increases, CMOS logic slows down
- At high die temp., long-term reliability can be compromised

Energy-Delay Relationship

Energy-

Energy-Efficient CMOS Circuit Design

6

- Must look at Energy-Delay Space of designs
- 7 April 19, 2010

Energy-Delay Space View

Energy-Efficient CMOS Circuit Design

Begin to see characteristics of designs

9 April 19, 2010

Begin to see characteristics of designs

10 April 19, 2010

Best High-Performance designs are clearly seen

- Different than what would be chosen from single point
 - 11 April 19, 2010

Also determines best design for Low-Power Target

Contribution of Wire to Delay and Energy should be examined too

• Without wire, differences appear large

13 April 19, 2010

Contribution of Wire to Delay and Energy should be examined too

• Wire strongly impacts selection of "best adders"

14 April 19, 2010

15 April 19, 2010

Where does Logical Effort lead us?

• It is possible to lower energy by trading delay? or ...

16 April 19, 2010

$(E-E_0)(D-D_0)=0.2\times E_0D_0$

*P. Penzes, Caltech, PhD 2002, V. Zyuban, ISLPED 2002

Energy-Efficient CMOS Circuit Design

Energy-Efficient CMOS Circuit Design

Exhaustive search

A circuit with 10 transistors and 10 possible size for each transistor requires to check 10^{10} possible solutions!

C. Giacomotto, N. Nedovic, and V. G. Oklobdzija, "*The Effect of the System Specification on the Optimal Selection of Clocked Storage Elements*", IEEE JoSSC, vol. 42, no. 6, June 2007.

20 April 19, 2010

• Design choice depends on (E,D) requirements

Prior Work on Design Optimization

Input

• Transistor-based [TILOS]

- Sizing individual transistors
- Growing complexity
- Applicable to small blocks only

Output

• Block-based [Zuyban & Strenski]

- Blocks: latch & logic
- Trading {energy,delay} of blocks
- CAD tools
- Fixed interface

Transistor-Based Approach

- Optimization problem: (i=1..M)
 - Minimize: Area($W_1, ..., W_M$) $\approx \Sigma W_i$
 - Constraint: $D_{worst}(W_1,...,W_M) = T$
- Delay modeling
 - Linear (RC-like): TILOS
 - Look-up table: AMPS (Synopsys)
- A convex problem \Rightarrow minimal solution exists
 - Different polynomial algorithms developed
 - May have issues with convergence
 - Long run time with increasing design complexity

Block-Based: Zyuban (IBM)

Application: Solution Verification

[Zyuban, IBM T.J. Watson Research]

- Verify optimality of solution:
 - Block 1: $(w_1/u_1) \cdot \eta_1 = 2.0$ Block 2: $(w_2/u_2) \cdot \eta_2 = 2.0$ Equal \Rightarrow optimal!

Application: Solution Verification

• If
$$\eta_1 = 3.2$$
 and $\eta_2 = 0.8$

- Block 1: $(w_1/u_1) \cdot \eta_1 = 8.0$ Block 2: $(w_2/u_2) \cdot \eta_2 = 0.5$ $Unequal \Rightarrow not optimal$
- Better solution? Relax η_1 and increase η_2

Major Limitation

- Zyuban's assumption:
 - Delay & energy independence of each block B_i
- Single path: block = gate

 $\begin{bmatrix} Delay \ T_d \propto \{ C_{out}, C_{in} \} \\ Energy \ E \propto \{ C_{out}, C_{in} \} \\ C_{in} : current \ gate \ cap \\ C_{out} : next \ gate \ cap \end{bmatrix} : energy, \ delay \ dependency \\ of \ adjacent \ gates \\ C_{out} : next \ gate \ cap$

- Similar dependency between blocks and pipelines
- No analytical solution if accounting dependency

Proposed Stage-Based Approach

- Stage ≈ logic depth
- Gates \rightarrow stage
 - Based on maximal distances to input and output
 - Stage delay: $d_{stage} = max\{d_{gate}\}$
 - Stage energy: $E_{stage} = \Sigma E_{gate}$
 - Estimated from gate energy & delay models

Delay and Energy Modeling of Gates

Pipelined Stage Optimization

Stage-Based Optimization

Optimization functions

- Delay: $D = \Sigma D_{\text{Stage(i)}}$
- Energy: $E = \Sigma E_{\text{Stage(i)}}$

Possible design constraints

- Delay target, D
- Input size, W_{input}
- Output load, Cload
- Posynomial Problems
 - Solvable with polynomial algorithms

Problem A: Delay Optimization

- Optimization problem
 - Minimize: $D = \Sigma D_{Si}$
 - Constraint: {Input, Load} = const.
- Objectives
 - Obtain minimally achievable delay, D_{min}
 - Wanted in performance-critical designs
 - Disregard energy consumption (*actually*, $\partial E_i / \partial D_i = \infty$)

Single Path: Logical Effort

Solution = equal stage effort f (i.e. fan-out)

Energy Cost vs. Total Delay

April 19, 2010

Multi-Path Circuits

Optimal delay depends on off-path load

April 19, 2010

Linear Branching

- Linear branching: $C_{off,i} / C_i = const.$ $dD/dC_i = 0 \ (\forall i = 1..N): f_i = f_{opt} = \left[\left(\prod_{i=1}^N g_i \right) \left(\prod_{i=1}^N b_i \right) \left(\frac{C_{Load}}{C_{in}} \right) \right]^{1/2}$ $D_{min} = N f_{opt} + \sum_{i=1}^N p_i$ Branching Factor, B
- Similar analytical form for solution
Non-Linear Branching

- Nonlinearity due to:
 - Constant off-path load (wire cap, min-size gates)
 - Unequal path lengths
 - Parasitic delay difference of gates

No analytical form

- Recursive solving
- Solution: unequal stage efforts

64-bit Static Kogge-Stone Adder

64-b KS: Stage Effort Distribution

Nonlinearity causes unequal stage efforts

 Nonlinear factors: wire load, parasitic delay diff.

64-b KS: Energy versus Delay

Significant wire effect on delay & energy

April 19, 2010

Problem B: Energy-Delay Tradeoff

- Optimization Problem
 - Minimize: $E = \Sigma E_{\text{Stage(i)}}$
 - Constraint: {Input, Load} = const.

$$\Sigma D_{\text{Stage}(i)} = D_{min} + \Delta D$$

- Objectives
 - Avoid infinite energy sensitivity at D_{min}
 - Equalize energy-delay sens.: $(\partial E/\partial D)_{Si} = (\partial E/\partial D)_{Sk}$
 - Trade delay for energy (traditional approach)

E-D Trade-off: Single Path

E-D Trade-off: Stage Effort Distrib.

April 19, 2010

64-b KS: Energy Delay Tradeoff

- D_{min} solution is very inefficient in energy
- 55% energy saving with 10% delay traded
- Solution = equal stage energy-delay sensitivity

Decrease Stage Effort LE Decrease Stage Effort LE Decrease Stage Effort LE Decrease Stage Effort LE Decrease Stage If this is your design point - the drop is steep ! But you should not be designing there!!

Increase

Stage Effort

For a small sacrifice in delay

the energy savings are big !

From:

R.W. Brodersen, M.A. Horowitz, D. Markovic, B. Nikolic, V. Stojanovic, "Methods for True Power Minimization," International Conference on Computer-Aided Design, ICCAD-2002, Digest of Technical Papers, San Jose, CA, November 10-14, 2002, pp. 35-42.

46 April 19, 2010

Energy-Efficient CMOS Circuit Design

Delay

Problem C: Energy Minimization

• Problem:

- Minimize: $E = \Sigma E_{Si}$
- Constraint: $D = \Sigma D_{Si} = const.$

Load = const.

- Objective:
 - Obtain absolute minimal energy @ given delay
 - Equalize energy-delay sens.: $(\partial E/\partial D)_{Si} = (\partial E/\partial D)_{Sk}$
 - Trade input size such that $(\partial E / \partial Input)_D = 0$

Single Path: Stage Effort Redistrib.

April 19, 2010

64-b KS: Minimal Energy vs. Delay

- 30 50% energy saving @ same performance
- 1.6 3.6X input size

Pipelined System Optimization

Pipelined System Optimization

- Design constraints
 - Delay target
 - External I/O constraint
- How to obtain minimal-energy solution?
 - Pipelined stages
 - Minimized for energy
 - Sensitive to input and load variations
 - System level
 - Balancing energy sensitivities at pipelined boundaries
 - Recursive process

Pipelined Stage: Efficient E-D Area

Efficient Input-Delay Area

Larger/smaller input <> less/more energy

Efficient Energy-Input @ D = const.

Sensitivity to Load @ D = const.

System Energy Optimization

- Energy minimization
 - Pipeline: minimize energy @ given input & load
 - System: balance energy sensitivities @ boundaries
- Trading elements: input size, output load
- Optimal criteria:

$$E_{StageA_{i}} = minimal$$

$$\sigma_{E,InputA_{i}} = \sigma_{E,LoadA_{i-1}}$$

How to Achieve Less Total Energy

 $E_{i-1} + E_i = min \iff \sigma_{E,Input(i)} = \sigma_{E,Load(i-1)}$

Case Study: Media Datapath

Case Study: Optimal Criteria

Case Study: Optimal Algorithm

Case Study: Media Datapath Solution

System Energy-Delay @ V_{DD}=const.

Similar E-D characteristics as single stages

• Possibly less input size @ lower delay

April 19, 2010

Effect of Supply Scaling

Potential Saving of System Energy

 Significant energy saving with correct supply or delay selection

Energy-Delay Improvement of Pipelined Stages

Architectural Advantages

1/N clock rate

Same clock rate

Energy-Throughput Comparison

Pipelining is mostly more efficient in E-D domain!

April 19, 2010

ACS Unit Implementation

Energy-Throughput Comparison

Less energy for deeper pipeline at given throughput

Designing a System for a Fixed Performance in the Energy-Delay Space

Energy-Efficient CMOS Circuit Design

Pipelining and Parallelism for an ACS Circuit

Energy-Efficient CMOS Circuit Design
Energy-Delay Results for Parallelism

⁷³ April 19, 2010

Energy-Efficient CMOS Circuit Design

Energy-Delay Results for Pipelining

74

Energy-Delay Estimation Matches Complex Circuit Simulation

Energy-Efficient CMOS Circuit Design

75 April 19, 2010

Energy Efficiency of Architectural Choices (including supply scaling and circuit sizing)

76 April 19, 2010

Eergy-Delay Results for Parallelism and Pipelining

77 April 19, 2010

Is it possible to lower the Energy?

- Reduce Energy for same Delay!
- Improve Delay for same Energy!

78 April 19, 2010

Achieved Energy Savings in KS and HC Adders

Simulation of 64-bit static adders confirms saving!

80 April 19, 2010

Energy-Efficient CMOS Circuit Design

Reduction of Hot-Spots

Energy minimization improves hotspots!

81 April 19, 2010

Accomplishments (June 30, 2003 to June 30, 2004)

90nm technology

Summary

- Energy-Efficient Design requires:
 - Early structure comparison in energy-delay space
 - Early Layout/Floorplanning
 - Optimization using energy minimization objective function
- LE does not guarantee a good design
- Our method of energy-minimization focuses on reducing power
- The same principles hold for other logic functions

Future Work

- Methodology improvement
 - General design rules
 - Algorithms with fast convergence
 - Guidelines for close-to-optimal solutions
- CAD tool
 - Custom vs. standard cell library
- Improve gate modeling & characterization
 - Worst-case vs. single-switching,... or between?
 - Process variation

April 19, 2010

Publications on Energy-Delay:

- Vojin G. Oklobdzija, Bart R. Zeydel, Hoang Dao, Sanu Mathew, Ram Krishnamurthy, "*Energy-Delay Estimation Technique for High-Performance Microprocessor VLSI Adders*", Proceedings of the International Symposium on Computer Arithmetic, ARITH-16, Santiago de Compostela, SPAIN, June 15-18, 2003.
- Hoang Q. Dao, Bart R. Zeydel, Vojin G. Oklobdzija, "*Energy Minimization Method for Optimal Energy-Delay Extraction*", Proceedings of the European Solid-State Circuits Conference, ESSCIRC 2003, Estoril, PORTUGAL, September 16-18, 2003.
- V. G. Oklobdzija, B. R. Zeydel, H. Q. Dao, S. Mathew, R. Krishnamurthy, <u>"Comparison of High-Performance VLSI Adders in Energy-Delay Space"</u>, *IEEE Transaction on VLSI Systems*, Volume 13, Issue 6, pp. 754-758, June 2005.
- Hoang Q. Dao, Bart R. Zeydel, Victor Zyuban, and Vojin G. Oklobdzija, "On Energy Optimization of Digital Systems", The fourth annual IBM Austin Conference on Energy-Efficient Design, ACEED 2005, Austin, Texas, March 1-3, 2005.
- H. Q. Dao, B. R. Zeydel, V. G. Oklobdzija, "Energy-Efficient Optimization of the Viterbi ACS Unit Architecture", *Proceedings of the Asian Solid-State Circuit Conference, A-SSCC 2005, Hsinchu, Taiwan, November 1-3, 2005*.
- H. Q. Dao, B. R. Zeydel, V. G. Oklobdzija, <u>"Energy Optimization of Pipelined Digital</u> <u>Systems Using Circuit Sizing and Supply Scaling</u>", *IEEE Transaction on VLST Systems*, Vol. 14, Issue 2, Feb. 2006 pp. 122-134.
- S. K. Hsu, S. K. Mathew, M. A. Anders, B. R. Zeydel, V. G. Oklobdzija, R. K. Krishnamurthy, S. Y. Borkar, "A 110 GOPS/W 16-bit Multiplier and Reconfigurable PLA Loop in 90-nm CMOS", IEEE Journal of Solid-State Circuits, Vol.41, No.1, January 2006.
- B. R. Zeydel, D. Baran, V. G. Oklobdzija, *"Energy Efficient Design of High-Performance VLSI Adders"*, IEEE Journal of Solid-State Circuits, June 2010.

٠