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CMOS is Scaling, Power Density is Not

Vdd and Vt not scaling well power/area not scaling
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CMOS is Scaling, Power Density is Not

Vdd and Vt not scaling well power/area not scaling
Parallelism to improve throughput within power budget
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Where Parallelism Doesn’t Help

44

CMOS circuits have well-defined minimum energy
Caused by leakage and finite sub-threshold swing
Need to balance leakage and active energy

Limits energy-efficiency, no matter how slowly the 
circuit runs

Energy/op vs. Vdd
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What if There Was No Leakage?
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Vdd decreases energy decreases
Mechanical switch offers near infinite sub-
threshold slope and no leakage current

Energy/op vs. Vdd
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*R. Nathanael et al., “4-Terminal Relay Technology for Complementary Logic,” IEDM 2009
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F. Chen et al., “Integrated Circuit Design with NEM Relays,” ICCAD 2008
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Switch Structure & Operation

Open Switch (“OFF”):
|Vgb| < Vpo (pull-out voltage)

Closed Switch (“ON”):
|Vgb| > Vpi (pull-in voltage)

Poly-SiGe Anchor

Poly-SiGe Beam/Flexure

Tungsten Body

Tungsten Source/Drain

Tungsten Channel
Poly-SiGe Gate

R. Nathanael et al., “4-Terminal Relay Technology for Complementary Logic,” IEDM 2009



NEM Relay as a Logic Element
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Drain
Source Body

Gate

4-terminal design mimics MOSFET operation
Electrostatic actuation is ambipolar

Non-inverting logic is possible
Actuation independent of source/drain voltages



NEM Relay Model
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Lumped Verilog-A model for circuit sims:
Mechanical dynamics: spring (k), damper (b), mass (m)
Electrical parasitics: non-linear gate-body (Cgb), gate-channel 
(Cgc), and source/drain-body cap (Cs,db), contact (Rcs,d)



Relay Characteristics
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Lumped model matches measurements

Use calibrated models for circuit design
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Relay Scaling

Constant E-field:
mechanical delay and 
VPI scale linearly*

Assuming surface 
forces scale – more 
later

For a 90nm device: VPI ~200mV, tPI ~10ns @ Vdd = 1V
(cantilever beam with W = 90nm, H = 90nm, tgap = 10nm, 
L = 2.3um)

Seems “large” and “slow” vs. CMOS, but…

1111
*H. Kam et al., “Design and Reliability of a Micro-Relay Technology…,” IEDM 2009



Digital Circuit Design with Relays

CMOS: delay set by electrical time constant
Quadratic delay penalty for stacking devices
Buffer & distribute logical/electrical effort over many stages

Relays: delay dominated by mechanical movement
Can stack ~100-200 devices before td,elec ≈ td,mech

So, want all relays to switch simultaneously
Implement logic as a single complex gate

1212



Digital Circuit Design with Relays

Delay Comparison vs. CMOS
Single mechanical delay vs. several electrical gate delays
For reasonable load, relay delay unaffected by fan-out/fan-in

Area Comparison vs. CMOS
Larger individual devices
Fewer devices needed to implement the same logic function

1313

4 gate delays 1 mechanical delay
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Most processor components exhibit the energy vs. 
performance tradeoff of static CMOS

Control, Datapath, Clock

Adder energy performance tradeoff is representative



Relay-Based Adder

Full adder cell:
12 relays vs. 24 
transistors
XOR “free”
Complementary  
signals avoid extra 
mechanical delay (to 
invert)

Relays all sized 
minimally

1515



N-bit Relay-Based Adder
Ripple carry 
configuration

Cascade full adder 
cells to create 
larger complex 
gate

Stack of N relays, 
but still single 
mechanical delay

1616



Simulated Energy-Delay vs. CMOS
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For similar area: >9x lower E/op, >10x greater delay

*D. Patil et. al., “Robust Energy-Efficient Adder Topologies,” in Proc. 18th IEEE Symp. 
on Computer Arithmetic (ARITH'07).

9x

10x

Vdd: 
0.9V 

0.32V

Vdd: 1V 
0.5V

Energy/op vs. Delay/op across Vdd

30x less capacitance
Lower device Cg, Cd

Fewer devices
2.4x lower Vdd

No leakage energy

Compare vs. 
Sklansky CMOS 
adder*



Parallelism

1818

Energy/op vs. Delay/op across Vdd & CL Can extend 
energy benefit up 
to GOP/s 
throughput

As long as 
parallelism is 
available

Area overhead 
bounded

Need to 
parallelize CMOS 
at some point too



Contact Resistance

1919

Energy/op vs. Delay/op across Vdd & CL

Low contact R 
not critical

Enables low 
force, hard 
contact material

Good news for 
reliability…



Fabricated Device Revisited
Improve reliability: intentionally 
increase contact R

Coat W electrodes with TiO2

*H. Kam et al., “Design and Reliability of a Micro-
Relay Technology…,” IEDM 2009
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Relay Energy Limit
Spring force must be able to overcome surface 
adhesion force FA

For large contacts, FA scales with area:

*H. Kam et al., “Design and Reliability of a Micro-Relay Technology…,” IEDM 2009
2121

Extracted surface 
energy ~5µJ/m2

Relay energy limit 
set by required Ron
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CMOS vs. Relays:  Mixed Signal

2323

I/O energy dominant if core is ~30x more efficient
See if I/O circuits can benefit as well
Representative examples:  DAC & ADC

How to process/generate analog signals?
No or limited “linear gain” in relays – rely on switching



NEM Relay Based DAC

Same topology as CMOS, except:
Add passive R to set impedance
Relays’ gate voltage independent of I/O voltage

Energy dominated by actual I/O energy:
@VIO=200mV, CL=1pF: 62.8fJ/bit vs. ~780fJ/bit for CMOS

2424
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NEM Relay Based Flash ADC

Topologically identical to CMOS
Sample/Hold input
Flash Converter – bank of 
comparators

Key difference: behavior of 
“comparators”

2525



Body terminal used to set 
threshold

Hysteretic switching:
Comparator threshold varies 
with previous state
Need to reset all comparators 
to the same initial state

Relay Based Comparators

2626

VT



Ambipolar actuation:
Comparators above & below input will evaluate
Use a different decoder

Each comparator has a “dead-zone” where it stays off
Can use “Max” or “Min” of this range to determine code
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ADC Results

Energy dominated by resistor string (320fJ out of 350fJ)
Power set by input dynamic range (VREF), not core voltage
FOM improves with more resolution (up to thermal noise limit)

Advantages stem from RonCg product

2828

Vcore = 0.3V
C = 500fF
R = 4kΩ

VREF = 1V
fsamp = 10 MS/s

6-bit res:  5.5fJ/conv
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Experimental Relay Circuits: Inverter

Circuit Diagram Voltage WaveformsVoltage Transfer Char.
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Circuit Demonstration Test-Chip

3131

F. Chen et al., “Demonstration of Integrated Micro-Electro-Mechanical Switch Circuits for
VLSI Applications,” to be presented at ISSCC 2010.

Test devices
Adders
Flip-flops/Latches
7:3 Compressor
SRAM, DRAM
DAC
ADC
Oscillators



Near-Term Driver: Power Gating

3232

Pitch scaling enables high current density
Even with high individual device Ron

TI micro-mirror pitch (~7.5µm): Imax ~ 100mA/mm2



Roadmap
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Conclusions
NEM relays offer unique characteristics 

Nearly ideal Ion/Ioff
Significantly lower Cg than CMOS
Switching delay largely independent of electrical τ

Relay circuits show potential for order of 
magnitude better energy efficiency

Key challenges are scaling & reliability
Circuit-level insights have proven critical (contact R)

3434
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