Integrated Circuit Design with Nano-Electro-Mechanical Switches

Elad Alon¹, Tsu-Jae King Liu¹, Vladimir Stojanovic², Dejan Markovic³

¹University of California, Berkeley ²Massachusetts Institute of Technology ³University of California, Los Angeles

UCLA

CMOS is Scaling, Power Density is Not

• V_{dd} and V_t not scaling well \rightarrow power/area not scaling

CMOS is Scaling, Power Density is Not

V_{dd} and V_t not scaling well → power/area not scaling
 Parallelism to improve throughput within power budget

Where Parallelism Doesn't Help

- CMOS circuits have well-defined minimum energy
 - Caused by leakage and finite sub-threshold swing
 - Need to balance leakage and active energy
- Limits energy-efficiency, no matter how slowly the circuit runs

What if There Was No Leakage?

\Box Vdd decreases \rightarrow energy decreases

Mechanical switch offers near infinite subthreshold slope and no leakage current

*R. Nathanael et al., "4-Terminal Relay Technology for Complementary Logic," IEDM 2009

Outline

Digital Circuit Design with NEM Relays

- Relay device/circuit basics
- Comparisons to CMOS
- Device implications

Analog/Mixed-Signal Design with Relays

Looking Forward and Conclusions

Switch Structure & Operation

R. Nathanael et al., "4-Terminal Relay Technology for Complementary Logic," IEDM 2009

NEM Relay as a Logic Element

4-terminal design mimics MOSFET operation

Electrostatic actuation is ambipolar

Non-inverting logic is possible

Actuation independent of source/drain voltages

NEM Relay Model

- Lumped Verilog-A model for circuit sims:
 - Mechanical dynamics: spring (k), damper (b), mass (m)
 - Electrical parasitics: non-linear gate-body (C_{gb}), gate-channel (C_{gc}), and source/drain-body cap (C_{s,db}), contact (<u>R_{cs,d}</u>)

Relay Characteristics

Lumped model matches measurements

Use calibrated models for circuit design

Relay Scaling

• For a 90nm device: $V_{Pl} \sim 200 \text{mV}$, $t_{Pl} \sim 10 \text{ns} @ V_{dd} = 1 \text{V}$

- (cantilever beam with W = 90nm, H = 90nm, t_{gap} = 10nm, L = 2.3um)
- Seems "large" and "slow" vs. CMOS, but...

*H. Kam et al., "Design and Reliability of a Micro-Relay Technology...," IEDM 2009

Digital Circuit Design with Relays

- CMOS: delay set by electrical time constant
 - Quadratic delay penalty for stacking devices
 - Buffer & distribute logical/electrical effort over many stages
- Relays: delay dominated by mechanical movement
 - Can stack ~100-200 devices before t_{d,elec} ≈ t_{d,mech}
 - So, want all relays to switch <u>simultaneously</u>
 - Implement logic as a single complex gate

Digital Circuit Design with Relays

- Delay Comparison vs. CMOS
 - Single mechanical delay vs. several electrical gate delays
 - For reasonable load, relay delay unaffected by fan-out/fan-in
- Area Comparison vs. CMOS
 - Larger individual devices
 - Fewer devices needed to implement the same logic function

CMOS vs. Relays: Digital Logic

- Most processor components exhibit the energy vs. performance tradeoff of static CMOS
 - Control, Datapath, Clock
- Adder energy performance tradeoff is representative

Relay-Based Adder

- Full adder cell:
 - 12 relays vs. 24 transistors
 - XOR "free"
 - Complementary signals avoid extra mechanical delay (to invert)
- Relays all sized minimally

N-bit Relay-Based Adder

- Ripple carry configuration
- Cascade full adder cells to create larger complex gate
- Stack of N relays, but still single mechanical delay

Simulated Energy-Delay vs. CMOS

For similar area: >9x lower E/op, >10x greater delay

*D. Patil et. al., "Robust Energy-Efficient Adder Topologies," in Proc. 18th IEEE Symp. on Computer Arithmetic (ARITH'07).

Parallelism

- Can extend energy benefit up to GOP/s throughput
 - As long as parallelism is available
- Area overhead bounded
 - Need to parallelize CMOS at some point too

Contact Resistance

Fabricated Device Revisited

Gate

Body

Source

Improve reliability: intentionally increase contact R

Coat W electrodes with TiO₂

Relay Energy Limit

- Spring force must be able to overcome surface adhesion force F_A
- **•** For large contacts, F_A scales with area:

- Extracted surface energy ~5µJ/m²
- Relay energy limit set by required R_{on}

*H. Kam et al., "Design and Reliability of a Micro-Relay Technology...," IEDM 2009

Outline

Digital Circuit Design with NEM Relays

- Relay device/circuit basics
- Comparisons to CMOS

Analog/Mixed-Signal Design with Relays

Looking Forward and Conclusions

CMOS vs. Relays: Mixed Signal

I/O energy dominant if core is ~30x more efficient

- See if I/O circuits can benefit as well
- Representative examples: DAC & ADC

How to process/generate analog signals?

• No or limited "linear gain" in relays – rely on switching

NEM Relay Based DAC

- Same topology as CMOS, except:
 - Add passive R to set impedance
 - Relays' gate voltage independent of I/O voltage
- Energy dominated by actual I/O energy:
 - @V_{IO}=200mV, C_L=1pF: <u>62.8fJ/bit</u> vs. ~<u>780fJ/bit</u> for CMOS

NEM Relay Based Flash ADC

Relay Based Comparators

 Body terminal used to set threshold

- Hysteretic switching:
 - Comparator threshold varies with previous state
 - Need to reset all comparators to the same initial state

Relay Based Comparators

Ambipolar actuation:

- Comparators above & below input will evaluate
- Use a different decoder
- Each comparator has a "dead-zone" where it stays off
 - Can use "Max" or "Min" of this range to determine code

ADC Results

- Energy dominated by resistor string (320fJ out of 350fJ)
 - Power set by input dynamic range (V_{REF}), not core voltage
 - FOM improves with more resolution (up to thermal noise limit)
- Advantages stem from R_{on}C_g product

Outline

Digital Circuit Design with NEM Relays

- Relay device/circuit basics
- Comparisons to CMOS

Analog/Mixed-Signal Design with Relays

Looking Forward and Conclusions

Experimental Relay Circuits: Inverter

Circuit Demonstration Test-Chip

- Test devices
- Adders
- Flip-flops/Latches
- 7:3 Compressor
- SRAM, DRAM
- DAC
- ADC
- Oscillators

F. Chen *et al.*, "Demonstration of Integrated Micro-Electro-Mechanical Switch Circuits for VLSI Applications," to be presented at *ISSCC 2010*.

Near-Term Driver: Power Gating

Pitch scaling enables high current density

Even with high individual device R_{on}

Imax ~ 100mA/mm²

Roadmap

Conclusions

NEM relays offer unique characteristics

- Nearly ideal I_{on}/I_{off}
- Significantly lower C_g than CMOS
- Switching delay largely independent of electrical τ
- Relay circuits show potential for order of magnitude better energy efficiency
- Key challenges are scaling & reliability
 - Circuit-level insights have proven critical (contact R)

Acknowledgements

- Students: Fred Chen, Hossein Fariborzi,
 Abhinav Gupta, Jaeseok Jeon, Hei Kam, Rhesa Nathanael, Vincent Pott, Matthew Spencer,
 Cheng Wang
- DARPA NEMS program
- □ FCRP (C2S2, MSD)
- Berkeley Wireless Research Center
- NSF